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SIMPLIFIED PREDICTIONS OF BREAKTHROUGH FRONTS FOR
CONSTANT-PATTERN ADSORPTION AND ION EXCHANGE

Jack S. Watson
Chemical Technology Division
Oak Ridge National Laboratory”

ABSTRACT

The loading cycle of many (perhaps most) commercial adsorption and ion
exchange operations involves a favorable isotherm. Concentration fronts for favorable
isotherms approach a constant pattern for long bed lengths, and most industrial
adsorption and ion exchange operations use sufficiently deep beds that the constant-
pattern conditions are approached. Once a constant pattern is established, the region
around the front can be analyzed using conventional methods developed for continuous
absorption/stripping operations, but the location of the feed and withdrawal points must
be assumed to move down the bed at the same rate at which the front moves. Using
this approach, the constant-pattern front can be calculated for any shape of constant-
pattern isotherm. The dimensionless distance in the bed is expressed in terms of
transfer units, and the shape of the front can be evaluated graphically even when the
relations can not be integrated analytically. This procedure is illustrated for binary ion
exchange isotherms. In the simplest cases, exchange of ions with like charge, the
integration can be performed analytically. For other cases, numerical and graphical
solutions are illustrated.

*Managed by Martin Marietta Energy Systems, Inc. under contract No. DE-
AC05-840R21400 for the U.S. Department of Energy. Accordingly, the U.S.
Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do so, for U.S. Government
purposes.
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INTRODUCTION

A large fraction of adsorption processes and binary ion exchange processes in
deep beds involve systems with "favorable" isotherms (1). These are isotherms which
have negative curvature, as illustrated in Figure 1. This means that the plot of loading
on the solid vs concentration in the fluid is concave downward. In these cases, the
shape of the isotherm results in  "sharpening” forces that make the loading front
sharper; that is, graphs of concentration vs position within the bed tend to become more
nearly vertical. However, these "sharpening" forces are opposed by dispersive forces
that tend to spread or flatten the concentration front. For very long beds, the opposing
tendencies eventually balance each other. and a constant-shaped front is approached, a
front that remains essentially unchanged as longer and longer beds are used. This
results in a steady shape for the front known as "constant-pattern” conditions, and many
industrial systems operate with such conditions.

In a constant-pattern system, scaleup to longer beds is relatively simple,
especially if the shape of the concentration front is known. The pattern can be
calculated for several of the more important isotherms (2-6). However, the solutions
are not always expressed in terms of simple equations that are easily used by designers
of adsorption processes. The purpose of this paper is to illustrate the principles behind
these analyses; compare them with more familiar and simpler analyses that are used for
steady state countercurrent processes, such as absorption or gas stripping; and illustrate
the approach by showing fronts from one particular set of isotherms, the fronts produced
by binary ion exchange.

While no new principles are involved in the following discussion, the
explanation is expected to be useful for many readers. Development of the exact
solutions mentioned earlier includes the principles involved in this analysis. However,
the approach described in this paper and the suggestion for considering a generalized
graphical approach for the complex experimentally determined isotherms were not found
in the literature. The papers by Cooney and Lightfoot (3) and Cooney and Strusi (4)
come closest to describing the approach in the same manner. There are often benefits
in having graphical analyses available since, in many cases. the designer or investigator

can gain additional insight from observing graphical steps in the solution, even if
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FIGURE 1. A "favorable" isotherm.

numerical calculations are used for the more precise final calculations. This analysis
is similar to an analysis of steady state countercurrent systems that is presented in the
popular textbook by Treybal (7), but that analysis can be modified as presented here to
describe the more common transient operation of fixed beds of adsorbents or ion

exchange materials.

Comparisons of Constant-Pattern Fronts to Steady State Countercurrent
Absorption

Consider a constant-pattern adsorption or ion exchange front moving down a
bed, as illustrated in Figure 2. The superficial flow rate of fluid down the bed is V,,
and the velocity by which the front moves down the bed is V. The fluid velocity and
the front velocity are easily related by considering an imaginary plane that crosses the
bed and moves with the velocity of the front. This plane is denoted by the dashed line
(a) in Figure 2. When the bed and the front are viewed from the moving plane. the bed
appears to be at steady state, and the front appears to be fixed in the (moving) space.
From the position of the moving plane, the bed appears to be a continuous

countercurrent operation, with solid adsorbent moving upward with the same velocity
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FIGURE 2. Movement of a constant-pattern front down an adsorption bed.

by which the front is (actually) moving down the bed, and the fluid appears to be
moving down the bed with a velocity equal to the actual superficial velocity minus the
velocity of the front. V-V, Thus, when viewed from the position of the moving front,
the bed appears much like a steady state countercurrent absorption/stripping or solvent
extraction operation.

Next, consider another plane (b) far upstream and a plane far downstream (c);
both planes are also moving down the bed with the same velocity as the front and are
noted on Figure 2 by dashed lines. A material balance between the two dashed lines
gives

(Cy - GV, - V) = (Qq - QY (1
where C, is the concentration of the solute in the feed: C, is the concentration in the
fluid that is in equilibrium with the bed far below the front (usually zero); Q. is the
concentration of solid that is in equilibrium with the inlet fluid; and Q, is the initial
concentration of solute in the bed (far downstream from the front). (Q, is often near

zero.) C, and Q, should be known; and Q,, and C; are obtained from two points on
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the equilibrium curve (the isotherm). Then the front velocity can be obtained by simply

solving this linear material balance for Vg

Vi=V(C, - Cinf)/(ch -QtC-Chp) . (2)
For the common case, where C,; and Q, are essentially zero, this simplifies to
Ve=V,C/HQ, + Co) - 3)

To analyze the constant-pattern adsorption system like the conventional absorption
systems, consider a material balance between the moving planes (a) and (b):

(Co- CXV, - V) = (Q - QV; . )
Here, C and Q denote concentrations of solute in the solid and fluid phases,
respectively, at any position within the front. In terms of conventional countercurrent
bed operations, this is called the operating line. It is linear; it goes through the point
far upstream where C equals C, and where Q equals Q_; and it has a slope:

slope = (V- V)/V;. (5)
This line is illustrated in Figure 1. However, the simplest way to plot the operating line
is to note that when the plane (a) is moved far downstream, the concentrations are Q,
and C,; that is, the operating line intersects the equilibrium curve (isotherm) where C
= C,,sand where C = C,. (As noted before, C, ; will be zero when Q, is zero, when the

initial bed contains no solute.)

Constant-Pattern Adsorption Fronts with Mass Transfer Resistance in the Fluid
Film

Factors that "spread” the front are mixing (dispersion or nonuniform axial flow)
and mass transfer resistance, which prevent the solid and fluid from reaching
equilibrium. Consider first the effects of mass transfer resistance in the fluid phase.
Using conventional analyses for absorption or stripping beds, the rate of mass transfer
can be expressed as

V (dC/dz) = ka(C - C") . (6)
Here, z is distance down the bed; k; is the fluid film mass transfer coefficient; a is the
area of adsorbent per unit volume of bed; and C' is the concentration of solute in the
liquid at the solid surface. For the case where all of the mass transfer resistance is in
the fluid film, C’ is the fluid concentration that would be in equilibrium with the solute

loading on the solid adsorbent, at that position in the bed. Following the traditional
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development of design equations for absorption/stripping equipment, this equation can

be rearranged and integrated as follows:
z = [V /ka][dC/C - CN] (N
= [HTU]INTU] ; (8)

with C, and C, representing any concentrations on the front. This expression assumes
that the velocities in the column are constant and do not have to be included inside the
integral. That is a valid assumption for dilute systems or for systems in which the
volume of the fluid does not change greatly with concentration of the solute. For gas-
phase systems with high concentrations of the adsorbed solute, this relation would have
to be changed slightly to express the gas flow rate and concentrations in terms of
nonadsorbed gas, not the total flow rate of gas.

HTU refers to the term in the first set of brackets and is called the height of a
transfer unit; NTU refers to the integral in the second set of brackets and is called the
number of transfer units required between concentrations C, and C,. Thus, the length
of bed required to change the concentration of solute from one value to another value
is determined by evaluating the integral (the NTU) from one concentration to the other
concentration and multiplying the required NTU by the HTU, which consists of a group
of terms that can be measured independently or measured as a group from absorption
data at one bed height. To evaluate the integral, values of C' must be determined from
the operating line (material balance) and the equilibrium curve. C is located on the
operating line, and C° is located by looking horizontally (at the same Q) to the
equilibrium curve.

To perform the integration graphically, 1/(C'-C) is plotted as a tunction of C.
The area under the curve between any two values of C is the change in the NTU that
corresponds to the concentration change. between the limits of the integration. This is
illustrated in Figures 3a and 3b. and the approach is exactly like that often used for
absorption/stripping/extraction operations. To apply this approach to adsorption
problems. it is best to think of dimensionless distances:

Z = Z/[HTU] = [NTU] . 9)
As indicated, the change in the NTU is equal to this ratio. but each value of NTU also

corresponds 1o a change in concentration of solute in the fluid. A plot of C vs NTU is
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FIGURE 3. Determination of NTU from a general favorable isotherm and the
operating line. Curves (a) and (b) illustrate the case for mass transfer
resistance in the fluid phase, and (¢) and (d) are for cases where

resistance is in the solid phase.

equivalent to a plot of C vs dimensionless distance, Z. This is a plot of the loading

front, but in units of dimensionless distance. To convert the results to real distances,

it is only necessary to multiply the dimensionless distance, Z, by the HTU, that is, by

V/ka.

For the general case, one need only look at the arbitrary adsorption given in

Figures 1 and 3. If the isotherm follows no given equation, but is simply a curve fit to

experimental data, one can still evaluate the plot of C vs NTU graphically by drawing

numerous horizontal lines from the equilibrium curve, C". to the operating line, C, and

using those two points to evaluate the integrand for the NTU as a function of C.
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The purpose of this integration is not to determine where the front occurs, but
to predict the shape of the front. The position of the front can be determined most
effectively from the capacity of the adsorbent using equation (1) or from the rate at
which the front moves, equation (2). If the slope of the front is symmetrical around the
midpoint (where C/C, is 1/2), this will be the rate at which the midpoint moves down
the bed. In other cases, this will be the point to the left of which the area above the
curve and to the right of which the area below the curve are equal. In most cases, this
is likely to be near the midpoint. The position of the front can not be obtained from
the C-vs-NTU plot because the graph becomes inaccurate as the concentration in the
solution approaches that in the feed; the integrand becomes infinity. However, the C-
vs-NTU plot can be used to accurately predict the shape of the front around the
midpoint and as far from the midpoint as one may wish to calculate.

In integrating to determine the NTU., it is necessary to start at some value of C
not equal to C,. Note from the operating line that at those conditions, the concentration
in solution is in equilibrium with the solid and the integrand is infinity. Thus, the
integration had to begin at least slightly removed from the end of the operating lines.
The resulting absolute values of the NTU are then incorrect, but the differences in NTU
from one value of C to another value are accurate. As noted earlier, the total length of
the bed can not be calculated in this manner. An appropriate starting point is the
midpoint in the breakthrough curve where the concentration is one-half the inlet
concentration.  The calculations described here are intended only to determine the
shape of the front and thus to estimate how far in advance of the 50% breakthrough
point the breakthrough concentration will reach a specified value.

By integrating for different distances from the midpoint, one can obtain values
for the NTU as a function of concentration on the front. To obtain a view of the
breakthrough curve, it is only necessary to plot C vs the value of NTU that corresponds
to that value of C, as in Figure 3. If the value of the NTU at the midpoint is defined
as zero, concentrations to the left of the midpoint will have negative NTU values and
those to the right of the midpoint will have positive values. The integration for
determining the NTU from C = C /2 can be performed graphically, as shown in Figure
3. If there is an expression for the isotherm, the integral (NTU) can be evaluated

analytically or numerically. Note that NTU is a dimensionless distance; so this plot
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gives the shape of the front, but it does not give the actual width or spreading of the
front. To obtain the width of the front, it is only necessary to convert the dimensionless
distance to real distance by multiplying the NTU by the HTU, that is, by V/ka. If

the value of NTU is assigned a value of zero at the 50% point, the distance values on

the new plot will denote distance from the 50% point.

Breakthrough Fronts with Mass Transfer in the Solid Phase

This presentation focused first on adsorption systems with mass transfer
resistance in the fluid film surrounding the adsorbent particles. Similar arguments can
be used to develop relations for systems with mass transfer resistance in a "solid film."
This is not an absolutely accurate concept, but it is a convenient way to approximate
cases with mass transfer resistance in the solid. Although solid diffusion resistance is
far more complicated than the simple fluid film concept, Glueckauf (8) demonstrated
that for long beds and systems with linear isotherms, diffusion in a solid can be
approximated reasonably accurately by an apparent solid film with a mass transfer
coefficient of

ks = 15D/,

where D is the apparent diffusion coefficient in the solid and r is the radius of the
particle. Others, including the author, have used this concept for nonlinear systems (9).
However, one should be aware that the approximation is not always as accurate as it is
for linear systems. The Glueckauf approximation will be more accurate when all of the
solute in the adsorbent is free to diffuse, that is, for cases where surface or solid
diffusion rates control the mass transfer. Then the solution for resistance in the particles
follows the form approximated by Glueckauf. However, for pore diffusion when the
solute adsorbed on the surfaces is unable to diffuse, the concentration fronts within the
adsorbent will be different, and, in the limited case, the fronts will approximate
"shrinking core" concentration profiles, which are much different from those assumed
in the Glueckauf approximation.

For a solid film resistance, the NTU is defined as

2

Z=[V/kall| dQAQ - Q) = [HTUJNTU],

where Q, and Q, are concentrations of the solute on the adsorbent at two positions on
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the front. Note that the HTU and NTU are defined differently in this case, and one
should not use the two sets of terms interchangeably. The integration to determine the
NTU is made by taking vertical positions between the operating line and the equilibrium
curve, as illustrated in Figures 3¢ and 3d. Otherwise, cases with solid film resistance
can be handled in the same way that is used for systems controlled by fluid film
resistance.

The breakthrough would normally be expressed as Q vs NTU. However, in this
case, the concentration in the adsorbent is given instead of the concentration in the fluid.
If it is preferable to plot the concentration in the fluid as a function of normalized
position (and it usually is preferable), one can use the operation shown in Figure 3a to
convert Q for each position to concentration. If the bed initially contains no solute, the
normalized solid concentration, Q/Q,, is equal to the normalized concentration in the
fluid, C/C,; so normalized plots of solid loading are the same as normalized plots of

fluid concentration.

Expressing Breakthrough Curves in Terms of Concentration vs Time

Although it was convenient to describe these relations in terms of concentration
in the fluid as a function of position in the bed. most measurements give concentrations
as a function of time at a given position in the bed, at the bed exit. Fortunately, such
a conversion is simple for constant-pattern systems because the front moves down the
bed with a constant velocity. V.. To convert the front concentration profile from C vs
distance, Z, to C vs time, it is only necessary to divide the distances by -V. Note that
if the midpoint of the front is assigned the value of zero, distances in front of the front
will be positive distances, and distances behind the midpoint will be negative distances.
By dividing the length by -V, the positive distances are converted to negative times,
time before the midpoint of the front reaches the exit. and negative distances are

converted 1o positive times, time after the midpoint of the front passes the exit.

Ion Exchange Equilibrium

This approach can be used to predict concentration fronts in any constant-pattern
system, and it will be illustrated for ion exchange processes. [t is not uncommon to see

investigators fitting ion exchange data to adsorption isotherms such as the Langmuir or
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Fruendlich isotherms. Of course, if those isotherms accurately describe the equilibrium
relations occurring within the front, the approaches just described will be reasonably
accurate in predicting the ion exchange fronts. Furthermore, the exchanging ions
retained within many strong base or strong acid ion exchange resins remain mobile, and
the Glueckauf approximation may not be an unreasonable approximation for diffusion
resistance in the solid phase. However, one should note that ion exchange processes
involve the counter diffusion of charged species, and electrostatic forces prevent either
ion from diffusing faster than the other. The observed or apparent diffusion coefficient
that would be used in describing either fluid or solid "film" resistance would correspond
to counter diffusion of the two ions and would not be the diffusion coefficient of either
ion alone. Furthermore, counter diffusion may not be exactly the same as single-
component diffusion considered by Glueckauf.

For a little more generality, it is often better to look at ion exchange equilibria
when applying the HTU-NTU approach to predicting concentration fronts. Binary ion
exchange equilibria can be written as

(I/n)A™ + (1/n,)B = (1/n)A + (1/n,)B™ . (10)
If one neglects variation in the activity coefficients in both the fluid (solution) and the
solid, the equilibria can be written as

K, = [A/A]"™ [B/B]"™ , (i
or

K = [A/A]{B/B]""™ ; (12)

where A and B are concentrations of ions A and B in the solution, and A and B are
concentrations of A and B in the ion exchange resin. The valences of A and B are n,
and n,, respectively, and K is K,"'. If activity coefficients do not change in either the
solution or the resin during the exchange, K (and K_,) will remain approximately
constant. Note that the total normality in the solution does not change during the ion
exchange processes. However, values for the equilibrium constant, K, are likely to be
different for different fronts if greatly different solution concentrations are used.

In equation (10), the ion A in solution is being exchanged for ion B in the resin.
This has some similarity to adsorption of A onto an adsorbent. Solving the equilibrium
relation for A gives the expression that is equivalent to an equilibrium isotherm:

A = KA[B/B]""2 . (13)
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To make this expression similar to an adsorption isotherm, it is necessary to eliminate
the concentrations of B in both the solution and the resin. For binary ion exchange, this
is relatively simple since the total normality of both the solution and the resin remains
constant throughout the process, throughout the concentration front:

B=[C,-nAln,, (14
and

B=[R,-nAln, . (15)

Substituting these values for B and B giv

A = KA{[R - n AJ[C - n AT} ™. (16)

This is equivalent to an isotherm when the equation is solved for A, the concentration
of A in the resin as a function of the concentration of A in solution. The general case
for arbitrary values of n, and n, needs to be evaluated numerically; three examples are

given in Figures 4-6. These are shown in dimensionless concentrations where

A" =A/IC, . a7)
and

A= AR, . (18)
Then.

A= {K[C/RI™™A ([l - nA'V[l - n Al (19)
For the case where n, = n., this can be solved directly for A’, and the integration to

determine NTU as a function of A can be evaluated analytically: for the more general
case, it will be necessary to do the evaluation numerically or graphically. The terms
within the first {} can be grouped together into a term. K"
K' =K[C/R]™ ™.

Note that K’ depends upon the ratio of C/R, as well as the ion exchange equilibrium
constant, K or K. Since R, is a constant for any particular resin, the equilibrium curve,
or isotherm, depends upon the solution concentration. C.. as well as the ion exchange
equilibrium constant, K. Since C, is usually considerably smaller than R,, K' usually
increases with decreasing concentration when n, is greater than n,. such as when a

divalent ion is being exchanged for a monovalent ion. This is the widely recognized
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FIGURE 4. Ion exchange equilibria for exchange of ions with equal charges.
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FIGURE 6. lon exchange equilibria for exchange of a monovalent ion for a divalent
ion.

affinity of ion exchange resins for higher-valent ions from dilute solutions, and there
is a converse lower affinity for the higher-valent ions from concentrated solutions.
Equilibrium relations for exchange of ions with equal valences are illustrated

in Figure 4. Separate curves are presented for different values of K'. Note that the
value of the exponent is zero: so K is the same as K'. The equilibrium curves are
favorable as long as K (or K') is greater than unity.  Equilibrium curves are shown in

Figures 5 and 6 for cases where the exchanging ions have equal charges, when a
monovalent ion (in the fluid) is being exchanged for a divalent ion (in the ion exchange
resin), and when a divalent ion is being exchanged for a monovalent ion. Separate

curves are given on each figure for different values of K. the ion exchange equilibrium
constant. Equilibrium curves for other values of K’ can be estimated by interpolating

between the curves presented.
The breakthrough curves calculated by the procedures just described are shown
in Figures 7-9. In the cases shown, the resin was loaded with B and the feed solution

contained only A. Thus, the operating line extends from the lower left corners in
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FIGURE 7. Normalized breakthrough fronts for exchange of ions with equal charge
and mass transfer resistance in the fluid phase.
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FIGURE 9. Normalized breakthrough fronts for exchange of a monovalent ion for
a divalent ion and mass transfer resistance in the fluid phase.

Figures 4-6 to the upper right corners. The integration to determine the breakthrough
curves could be performed graphically. but the curves presented in Figures 7-9 were
obtained using numerical integration since expressions for the equilibrium were
available. (Analytical integration is possible for the case where the charges on the
exchanging ions are equal.) The figure contains several curves that correspond to
different values of the equilibrium constant, K'. Different figures are presented for
exchange of monovalent ions for divalent ions and for the exchange of divalent ions for
monovalent ions. These curves collectively describe a wide range of ion exchange
fronts. Approximate breakthrough fronts can be estimated for other values of the ion
exchange equilibrium constant by interpolating between the curves presented. Similar
dimensionless breakthrough fronts based upon resistance in the solid film are presented
in Figures 10-12.

These curves are expressed as a function of dimensionless distances, NTU.

Thus, the width of the breakthrough curve is determined by the fluid film mass transfer
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FIGURE 10. Normalized breakthrough fronts for exchange of ions with equal charges

and mass transfer resistance in the solid phase.
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FIGURE 12. Normalized breakthrough fronts for exchange of a monovalent ion with
a divalent ion and mass transfer resistance in the solid phase.

coefficient and the fluid velocity (i.e., by the HTU) as well as for the curvature in the

isotherm (as expressed in K'). For a given HTU, the front is broader (less steep) with
lower values of K. Furthermore, the curves for lower values of K' are more nearly like

the symmetric curves produced by systems with linear isotherms.

Irreversible Isotherms - The Special Case When K' Approaches Infinity

As K’ increases, the curves become less symmetric; in the limit with large
values of K', the curves approach the solution for an irreversible isotherm. The

irreversible isotherm is also shown in Figures 7-12. The irreversible isotherm as

described by Cooper (10) is easily evaluated in the terms just described. In that case,

C* is always zero; thus, the NTU is easily integrated. For an irreversible isotherm,
NTU = - de/C =-In C + constant .

If one specifies that the NTU will be zero when C is 0.5 (the convention used in other

examples in this paper), the constant becomes -In(0.5), and the equation becomes

NTU = - In(2C) .
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Solving the expression for C gives

C = 0.5exp(-NTU) .
Note that this is not a symmetrical plot. The value of C declines exponentially with
NTU (or position down the bed), but C would appear to be greater than unity for NTU
less than -In(2). This simply implies that the breakthrough front is very steep in this
region, and for NTU less than -In(2), C is unity. This breakthrough curve is also
illustrated in Figures 7-9. Note that the breakthrough fronts approach close to the
irreversible case, when K’ becomes 16 or greater.

Similarly, if the resistance is all in a solid "film," the NTU becomes

NTU =- de/(Q‘-Q) =- de/(l - Q) =In(1 - Q) + constant .
For the irreversible isotherm, Q" is 1 for all values of C. If the NTU is set equal to
zero when Q is 0.5, the constant is -In(0.5) and the equation becomes

NTU = In[2(1 - Q)] .
Expressed in terms of Q, this becomes

Q =1 - 0.5exp(NTU) .
This is also a nonsymmetric front. However, in this case, the curve becomes steep and
C appears to become negative at values of NTU greater than +In(2). In reality, C will
be equal to zero for values of NTU greater than In(2). This breakthrough front is
shown in Figures 10-12. Note that the breakthrough curve approaches the irreversible

case when K’ becomes 16 or greater.
In many cases, it is not possible to determine if the resistance to mass transfer

is largely in the fluid film or in the solid phase from the shape of the breakthrough
curve. In the case of the irreversible isotherm, this may be possible, but one should
note that there are several reasons why this is usually very difficult. First, the view of
the solid-phase resistance as a "film" is often greatly simplified. In many cases, such
as where a significant fraction of the adsorbed solute is immobile, the Glueckauf
approximation can become less accurate. Also, other "resistances” to mass transfer are
usually present and contribute to spreading of the breakthrough front. Axial dispersion
becomes important when both fluid- and solid-phase resistances are reduced sufficiently.
Any or all of these effects can make it very difficult to determine the relative
importance of the different resistances to mass transfer solely from the shape of

breakthrough fronts, even for irreversible isotherms.
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Determination of Mass Transfer Coefficients from Breakthrough Data

Although the discussion given above assumed that the objective was to evaluate
the shape and width of a breakthrough front from knowledge of the adsorption or ion
exchange isotherm and the appropriate mass transfer coefficient. the same analysis can
be used to determine the mass transfer coefficient from experimental constant-pattern
fronts. This may be desirable in quantitatively evaluating different adsorbents or ion
exchange resins. To determine the mass transfer coefficient, it is necessary to know the
adsorption/ion exchange isotherm. The operating line is constructed from the specified
initial condition of the bed and the final composition of the solution and the
adsorbent/resin loading, as illustrated in Figure 1. The dimensionless breakthrough
curve is then constructed, as illustrated in Figure 3. Note that the dimensionless
breakthrough curve depends upon the isotherm and the operating line: it is dependent
of the mass transfer resistance in the system only in the sense that one needs to know
whether the NTU should be evaluated in terms of resistance in the fluid phase or in the
solid phase. For many ion exchange processes, integration may not be necessary
because the dimensionless fronts can be estimated by interpolating between the curves

for different values of K’ presented in Figures 4-12.

To evaluate the mass transfer coefficient, one only needs to compare the data
with the normalized breakthrough curve. For instance, the normalized breakthrough
curve can be used to determine the NTU required for the concentration in the front to
change from 0.2 times the inlet concentration to 0.8 times the inlet concentration. Then
the time or distance for the same concentration change can be taken from the
experimental curve. The ratio of these values will be the HTU:

HTU =Z_/Z,,
where Z_ is the measured distance, and Z, is the dimensionless distance. Then the mass
transfer coefficient is obtained by dividing the superficial fluid velocity by the HTU.

Once the change in NTU for a given change in concentration is determined, it
can be used for determining the mass transfer coefficient at any number of fluid
velocities, or flow rates. That is, the distance or time required for the change in
concentration can be determined for each velocity used; these values can be used to
determine the HTU for each velocity, and then the mass transfer coefficients can be

determined. Similarly, a single normalized breakthrough curve could be used for a
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variety of particle diameters, as long as all of the particle material is the same and has

the same isotherm.

CONCLUSIONS

Because they are unsteady state operations, fixed-bed adsorption and ion
exchange are often evaluated superficially or incompletely. There are only a few exact
solutions for common cases. Although many real systems can be approximated by one
of the available solutions, even these are numerically difficult to evaluate and thus are
often not used when they are needed. The graphical/numerical method suggested in this
paper can be used for any constant-pattern adsorption of ion exchange systems. It is
an extension of steady state analysis and design methods commonly used for
absorption/stripping operations. The approach can be used either to predict the shape
and width of adsorption or ion exchange fronts once mass transfer coefficients are
known or to evaluate mass transfer coefficients from experimental measurements of
breakthrough fronts. Normalized ion exchange equilibrium curves and breakthrough
curves are presented which should be useful for approximating breakthrough fronts for

a large number of binary ion exchange processes.
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