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SEPARATION SCIENCE AND TECHNOLOGY, 30(7-9), pp. 1351-1371, 1995 

SIMPLIFIED PREDICTIONS OF BREAKTHROUGH FRONTS F O R  
CONSTANT-PATTERN ADSORPTION AND ION EXCHANGE 

Jack S. Watson 
Chemical Technology Division 

Oak  Ridge National Laboratory. 

ABSTRACT 

The loading cycle of many (perhaps most) commercial adsorption and ion 
exchange operations involves a favorable isotherm. Concentration fronts for favorable 
isotherms approach a constant pattern for long bed lengths, and most industrial 
adsorption and ion exchange operations use sufficiently deep beds that the constant- 
pattern conditions are approached. Once a constant pattern is established, the region 
around the front can be analyzed using conventional methods developed for continuous 
absorption/stripping operations, but the location of the feed and withdrawal points must 
be assumed to move down the bed at the same rate at which the front moves. Using 
this approach, the constant-pattern front can be calculated for any shape of constant- 
pattern isotherm, The dimensionless distance in the bed is expressed in terms of 
transfer units, and the shape of the front can be evaluated graphically even when the 
relations can not be integrated analytically. This procedure is illustrated for binary ion 
exchange isotherms. In the simplest cases, exchange of ions with like charge, the 
integration can be performed analytically. For other cases, numerical and graphical 
solutions are illustrated. 

*Managed by Martin Marietta Energy Systems, Inc. under contract No. DE- 
AC05-840R21400 for the U.S. Department of Energy. Accordingly, the U.S.  
Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or allow others to do so, for U.S.  Government 
purposes. 
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INTRODUCTION 

WATSON 

A large fraction of adsorption processes and binar!. ion exchange processes i n  

deep beds involve systems \\ it11 "favorable" isotherms ( I  ). These are isotherms which 

have negative curvature, as illustrated in Figure I .  This means that the plot of loading 

on the solid vs concentration in the fluid is concave downward. In these cases, the 

shape of thc isotherm results in "sharpening" forces that make the loading front 

sharper; that is, graphs of concentration vs position Lvithin the bed tend to become more 

nearly vertical. Hoaever. these "sharpening" forces are opposed by dispersive forces 

that tend to spread or flatten the concentration front. For very long beds. the opposing 

tendencies eventually balance each other. and a constant-shaped front is approached, a 

front that remains essentiall! unchanged as longer and longer beds are used. This 

results in a steady shape for the front knonn as "constant-pattern'' conditions, and many 

industrial systems operate with such conditions. 

In a constant-pattern system. scaleup to longer beds is relatively simple, 

especially if the shape of the concentration front is known. The pattern can be 

calculated for several of the more important isotherms (2-6) .  However. the solutions 

are not always expressed i n  terms of simple equations that are easily used by designers 

of adsorption processes. The purpose of this paper is to illustrate the principles behind 

these analyses; compare them \vith more familiar and simpler analyses that are used for 

steady state countercurrent processes, such as absorption or gas stripping; and illustrate 

the approach by shou ing fronts from one particular set of isotherms. the fronts produced 

by binary ion exchange. 

While no neu principles are involved i n  the following discussion, the 

explanation i s  expected to be useful for man!. readers. Development of the exact 

solutions nientioned earlier includes tlie principles in\olved i n  this analysis. However, 

the approach described in this paper and the suggestion for considering a generalized 

graphical approach for the complex experimentall!, determined isotherms were not found 

in the literature. The papers by Cooney and Lightfoot ( 3 )  and Cooney and Strusi (4) 

come closest to describing the approach in the same manner. There are often benefits 

in having graphical analyes available since. i n  many cases. the designer or investigator 

can gain additional insight from observing graphical steps i n  the solution, even if 
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SIMPLIFIED PREDICTIONS OF BREAKTHROUGH FRONTS 1353 
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C 

FIGlJRE 1. A "favorable" isotherm. 

numerical calculations are used for the more precise final calculations. This analysis 

is similar to an analysis of steady state countercurrent systems that is presented in the 

popular textbook by Treybal (7), but that analysis can be modified as presented here to 

describe the more common transient operation of fixed beds of adsorbents or ion 

exchange materials. 

Comparisons of Constant-Pattern Fronts to Steady State Countercurrent 
AbsorDtion 

Consider a constant-pattern adsorption or ion exchange front moving down a 

bed, as illustrated in Figure 2. The superficial flow rate of fluid down the bed is V,. 

and the velocity by which the front moves down the bed is V, .  The fluid velocity and 

the front velocity are easily related by considering an imaginary plane that crosses the 

bed and moves with the velocity of the front. This plane is denoted by the dashed line 

(a) in Figure 2. When the bed and the front are viewed from the moving plane. the bed 

appears to be at steady state, and the front appears to be tixed i n  the (mo\iiig) space. 

From the position of the moving plane, the bed appears to be a continuous 

countercurrent operation, with solid adsorbent moving upward with the same velocity 
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1354 WATSON 

FIGURE 2. Movement of a constant-pattern front down an adsorption bed 

by which the front is (actually) moving doun the bed, and the fluid appears to be 

moving down the bed with a velocity equal to the actual superficial belocity minus the 

velocity of the front. V,-V,. Thus, when viewed from the position of the moving front, 

the bed appears much like a steady state countercurrent absorption/stripping or solvent 

extraction operation. 

Next. consider another plane (b) far upstream and a plane far downstream (c ) ;  

both planes are also moving down the bed with the same velocity as the front and are 

noted on Figure 2 by dashed lines. A material balance between the two dashed lines 

gives 

(C, C,,,rP', - V J  (Qcq QJvr (1)  

where C, is the concentration of the solute in the feed: C,,, is the concentration i n  the 

fluid that is in equilibrium with the bed far below the front (usually zero); Q,,, is the 

concentration of solid that is in equilibrium \vith the inlet fluid: and Q, is the initial 

concentration of solute in the bed (far downstream from the front). (Q, is often near 

zero,) C, and Q, should be known; and Q,, and C,,, are obtained from two points on 
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SIMPLIFIED PREDICTIONS OF BREAKTHROUGH FRONTS 1355 

the equilibrium curve (the isotherm). Then the front velocity can be obtained by simply 

solving this linear material balance for V,: 

V, = VdC, - CJ(Q,q  - Q, + Co - C d  

Vf = V,CJ(Q,, + C,) . 

(2 )  

For the common case, where Cinf and Q, are essentially zero, this simplifies to 

(3 1 
To analyze the constant-pattern adsorption system like the conventional absorption 

systems, consider a material balance between the moving planes (a) and (b): 

(C, - C)(V, - V,) = (Qeq - Q)v, . (4) 

Here, C and Q denote concentrations of solute in the solid and fluid phases, 

respectively, at any position within the front. In terms of conventional countercurrent 

bed operations, this is called the operating line. It is linear; it goes through the point 

far upstream where C equals C, and where Q equals Qcq; and it has a slope: 

slope = (V, - Vf]/Vr. ( 5 )  
This line is illustrated in Figure 1. However, the simplest way to plot thc operating line 

is to note that when the plane (a) is moved far downstream, the concentrations are Q,  

and C,,,; that is, the operating line intersects the equilibrium curve (isotherm) where C 

= C,,, and where C = C,. (As noted before, C,,, will be zero when Q, is zero, when the 

initial bed contains no solute.) 

Constant-Pattern Adsorption Fronts with Mass Transfer Resistance in the Fluid 
- Film 

Factors that "spread" the front are mixing (dispersion or nonuniform axial flow) 

and mass transfer resistance, which prevent the solid and fluid from reaching 

equilibrium. Consider first the effects of mass transfer resistance in the fluid phase. 

Using conventional analyses for absorption or stripping beds, the rate of mass transfer 

can be expressed as 

V,(dC/dz) = kp(C - C') . ( 6 )  
Here, z is distance down the bed; k, is the fluid film mass transfer coefficient; a is the 

area of adsorbent per unit volume of bed; and C' is the concentration of solute in the 

liquid at the solid surface. For the case where all of the mass transfer resistance is in 

the fluid film, C' is the fluid concentration that would be in equilibrium with the solute 

loading on the solid adsorbent, at that position in the bed. Following the traditional 
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1356 WATSON 

development of design equations for absorptionistripping equipment, this equation can 

be rearranged and integated as follo\rs: 

( 7 )  z = [Vsik,a][dC!(C - C')] 

= [HTUIWTU] ; (8) 

with C ,  and C2 representing any concentrations on the front. This expression assumes 

that the velocities in the column are constant and do not have to be included inside the 

integral. That is a valid assumption for dilute s)steins or for systems i n  which the 

volume of the fluid does not change greatl) \ k i t h  coiicentratioii of the solute. For gas- 

phase systems with high concentrations of the adsorbed solute. this relation would have 

to be changed slightly to espress the gas flov rate and concentrations i i i  terlns of 

nonadsorbed gas, not the total flou rate of gas. 

HTU refers to the term in the first set of brackets and is called the height of a 

transfer unit; NTU refers to the integral in the second set of brackets and is called tlie 

number of transfer units required between concentrations C ,  and C?. Thus. the length 

of bed required to change the concentration of solute from one \ ,due to another value 

is determined by evaluating the integral (tlie NTU) from m e  concentration to tlie other 

concentration and multiplying the required NTL' b j -  the HTU, \\hich consists o f a  group 

of tenns that can be measured independently or measured as a group from absorption 

data at one bed height. To e\aluate the integral. values of C' must be determined froin 

the operating line (material balance) and the equilibrium curve. C is located on the 

operating line. and C' is located b>, looking horizontally (at the same Q) to thc 

equilibrium curve. 

To perform the integration graphicall). I!(C*-C) is plotted as a function of C. 

The area under the curve betneen an)' t uo  values of C is the change in the NTU that 

corresponds to the concentration change. betneen tlie limits of the integration. This is 

illustrated in Figures 3a and 3b. and the approach is exactly like that often used for 

absorptionistrippingiestraction operations. To applj this approach to adsorption 

problems. it is best to th ink  of dimensionless distances: 

Z = zl[IlTU] = WTU] , ( 9 )  

As indicated, the change in the NTU is equal to this ratio. but each value of NTll also 

corresponds to a change in concentration of solute in the fluid. A plot of C vs NTU is 
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SIMPLIFIED PREDICTIONS OF BREAKTHROUGH FRONTS 1357 

FOR MASS TRANSFER 
RESISTANCE IN THE 

"LIQUID FILM" 

Q 

C 

FOR MASS TRANSFER 
RESISTANCE IN THE 

"SOLID FILM" 

Q 

L 

c1 c2 c Qi Qz Q 

FIGURE 3 .  Determination of NTU from a general favorable isotherm and the 
operating line. Curves (a) and (b) illustrate the case for mass transfer 
resistance in the fluid phase, and (c) and (d) are for cases where 
resistance is in the solid phase. 

equivalent to a plot of C vs dimensionless distance, Z. This is a plot of the loading 

front, but in units of dimensionless distance. To convert the results to real distances. 

it is only necessary to multiply the dimensionless distance, Z, by the HTU, that is. by 

V,lkp. 

For the general case, one need only look at the arbitrary adsorption given in 

Figures 1 and 3. If the isotherm follows no given equation, but is simply a curve tit to 

experimental data, one can still evaluate the plot of C vs NTU graphically by drawing 

nuinerous horizontal lines from the equilibrium curve, C'. to the operating line, C, and 

using those two points to evaluate the integrand for the NTU as a function of C. 
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1358 WATSON 

The purpose of this integration is not to determine where the front occurs, but 

to predict the shape of the front. The position of the front can be determined most 

effectively from the capacity of the adsorbent using equation ( I )  or from the rate at 

which the front moves. equation (2). If the slope of the front is symmetrical around the 

midpoint (where CIC, is ID), this will be the rate at which the midpoint moves down 

the bed. In other cases, this will be the point to the left of which the area above the 

curve and to the right of which the area below the curve are equal. In  most cases. this 

is likely to be near the inidpoint. The position of the front can not be obtained from 

the C-vs-NTU plot because the graph becomes inaccurate as the concentration in the 

solution approaches that iii the feed; the integrand becomes infinity. However. the C- 

vs-NTU plot can be used to accuratel} predict the shape of the front around the 

midpoint and as far from the midpoint as one may wish to calculate. 

In integrating to determine the NTU, it is necessary to start at some value of C 

not equal to C,. Note from the operating line that at those conditions, the concentration 

in solution is in equilibrium with the solid and the integrand is infinity. Thus, the 

integration had to begin at least slightly removed from the end of the operating lines. 

The resulting absolute values of the NTU are then incorrect. but the differences i n  NTU 

from one value of C to another value are accurate. As noted earlier, the total length of 

the bed can not be calculated in this manner. An appropriate starting point is the 

midpoint in the breakthrough curve \\here the concentration is one-half the inlet 

concentration. The calculations described here are intended only to determine the 

shape of the front and thus to estimate how far in advance of the 50% breakthrough 

point the breakthrough concentration will reach a specified value. 

By integrating for different distances from the midpoint, one can obtain values 

for the NTU as a function of concentration on the front. To obtain a view of the 

breakthrough curve, it is only necessaq to plot C vs the value of NTU that corresponds 

to that value of C, as in Figure 3. If the value of the NTU at the midpoint is defined 

as zero, concentrations to the left of the midpoint will have negative NTU values and 

those to the right of the midpoint \ \ i l l  have positive values. The integration for 

determining the NTU from C = C,/2 can be perfonned graphically. as shown in Figure 

3. If there is an expression for the isotherm. the integral (NTU) can be evaluated 

analytically or numerically. Note that NTU is a dimensionless distance; so this plot 
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SIMPLIFIED PREDICTIONS OF BREAKTHROUGH FRONTS 1359 

gives the shape of the front, but it does not give the actual width or spreading of the 

front. To obtain the width of the front, it is only necessary to convert the dimensionless 

distance to real distance by multiplying the NTU by the HTU, that is, by V / k p .  If 

the value of NTU is assigned a value of zero at the 50% point, the distance values on 

the new plot will denote distance from the 50% point. 

Breakthrough Fronts with Mass Transfer in the Solid Phase 

This presentation focused first on adsorption systems with mass transfer 

resistance in the fluid film surrounding the adsorbent particles. Similar arguments can 

be used to develop relations for systems with mass transfer resistance in a "solid film." 

This is not an absolutely accurate concept, but it is a convenient way to approximate 

cases with mass transfer resistance in the solid. Although solid diffusion resistance is 

far more complicated than the simple fluid film concept, Glueckauf (8) demonstrated 

that for long beds and systems with linear isotherins, diffusion in a solid can be 

approximated reasonably accurately by an apparent solid film with a mass transfer 

coefficient of 

k, = ISD/? , 

where D is the apparent diffusion coefficient in the solid and r is the radius of the 

particle. Others, including the author, have used this concept for nonlinear systems (9). 

However, one should be aware that the approximation is not always as accurate as it is 

for linear systems. The Glueckauf approximation will be more accurate when all of the 

solute in the adsorbent is free to diffuse, that is, for cases where surface or solid 

diffusion rates control the mass transfer. Then the solution for resistance in the particles 

follows the fonn approximated by Glueckauf. However, for pore diffusion when the 

solute adsorbed on the surfaces is unable to diffuse, the concentration fronts withiii the 

adsorbent will be different, and, in the limited case, the fronts will approximate 

"shrinking core" concentration profiles, which are much different from those assumed 

in the Glueckauf approximation. 

For a solid film resistance, the NTU is defined as 

Z = [V,/k,a][ dQ/(Q' - Q)] = [HTU][NTU] , %' 
where Q, and Qz are concentrations of the solute on the adsorbent at two positions on 
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1360 WATSON 

the front. Note that the HTU and NTU are defined differently in this case, and one 

should not use the hvo sets of terms interchangeably. The iiltegration to determine the 

NTU is made by taking vertical positions between the operating line and the equilibrium 

curve, as illustrated in Figures 3c and 3d. Otherwise, cases wlith solid film resistance 

can be handled in the same \vay that i s  used for sjstems controlled by fluid film 

resistance. 

The breakthrough uould normally be expressed as Q \'s N P U .  However, in this 

case, the concentration in the adsorbent i s  given instead ofthe concentration in the fluid. 

If it is preferable to plot the concentration in the fluid as a function of normalized 

position (and it usually is preferable). one can use the operation shown in Figure 3a to 

convert Q for each position to concentration. If the bed initially contains no solute, the 

normalized solid concentration, QiQ,. is equal to the norinalized concentration i n  the 

fluid, CIC,,; so normalized plots of solid loading are the same as normalized plots of 

fluid concentration. 

Expressine Breakthrough Curves in Terms of Concentration vs Time 

Although it was convenient to describe these relations in terms of concentration 

i n  the fluid as a function of position in the bed. most measurements give concentrations 

as a function of time at a given position i n  the bed. at tlie bed exit. Fortunately. such 

a conversion is simple for constant-pattern systems because the front moves down the 

bed with a constant velocity. V,. To convert the front concentration profile from C vs 

distance, Z, to C vs time, it is onlj necessar! to diiide the distances by -Vf .  Note that 

if the midpoint of the front is assigned the \slue of zero. distances in front of the front 

will be positive distances. and distances behind the midpoint will be negative distances. 

By dividing the length by -Vp the positive distances are converted to negative times, 

time before the midpoint of tlie front reaches the exit. and negative distances are 

converted to positive times. time after the midpoint of the front passes tlie exit. 

Ion Exchange Eauilibriuni 

This approach can be used to predict concentration fronts i n  an, constant-pattern 

system, and it will be illustrated for ion exchange processes. It is not uncommon to see 

investigators fitting ion exchange data to adsorption isotherms such as the Langmuir or 
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SIMPLIFIED PREDICTIONS OF BREAKTHROUGH FRONTS 1361 

Fruendlich isotherms. Of course, if those isotherms accurately describe the equilibrium 

relations occurring within the front, the approaches just described will be reasonably 

accurate in predicting the ion exchange fronts. Furthermore, the exchanging ions 

retained within many strong base or strong acid ion exchange resins remain mobile. and 

the Glueckauf approximation may not be an unreasonable approximation for diffusion 

resistance in the solid phase. However, one should note that ion exchange processes 

involve the counter diffusion of charged species, and electrostatic forces prevent either 

ion from diffusing faster than the other. The observed or apparent diffusion coefficient 

that would be used in describing either fluid or solid "film" resistance would correspond 

to counter diffusion of the two ions and would not be the diffusion coefficicnt of either 

ion alone. Furthermore, counter diffusion may not be exactly the same as single- 

component diffusion considered by Glueckauf. 

For a little more generality, it is often better to look at ion exchange equilibria 

when applying the HTU-NTU approach to predicting concentration fronts. Binary ion 

exchange equilibria can be written as 

(I/n,)A'"1 + (I/n,)B = (I/n,)s?, f (l/ii2)B+"? . (10) 

If one neglects variation in the activity coefficients in both the fluid (solution) and the 

solid, the equilibria can be written as 

KO = [A/A]""I [B/B]""? , ( 1  1)  

K = [A/A][B/B_l"1'"2 ; (12) 

or 

where A and B are concentrations of ions A and B in the solution, and A and S are 

concentrations of A and B in the ion exchange resin. The valences of A and B are ti, 

and n?, respectively, and K is K,"'. I f  activity coefficients do not change in either the 

solution or the resin during the exchange, K (and KO) will remain approximately 

constant. Note that the total normality in the solution does not change during the ion 

exchange processes. However, values for the equilibrium constant, K, are likely to be 

different for different fronts if greatly different solution concentrations are used. 

In equation (lo), the ion A in solution is being exchanged for ion B in the resin. 

This has some similarity to adsorption of A onto an adsorbent. Solving the equilibrium 

relation for A gives the expression that is equivalent to an equilibrium isotherm: 

- A = KA[&'B]"l'"l . (13) 
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1362 WATSON 

To make this expression similar to an adsorption isotherm. it is necessary to eliminate 

the concentrations of B in both the solution and the resin. For binarl ion excliange, this 

is relatively simple since the total norniality of both the solution and the resin remains 

constant throughout the process, throughout the concentration front: 

B 1 [C, - n,A]/n, , 

- B = [R, - n , d / n z  . 

(14) 
and 

(15) 

Substituting these values for B and B gives 

This is equivalent to an isotherm lvhen the equation is solved for A. the concentration 

of A in the resin as a function of the concentration of A in solution. The general case 

for arbitrary values of n, and n2 needs to be evaluated numerically; three examples are 

given in Figures 4-6. These are shown in dimensionless concentrations where 

A' = AIC, . (17) 

- A' = AIR, . 0 8 )  

- A' = {K[C,IR,]'-"I"~IA'([l - n&']/[l - n , A ] } " l " ~  . 

and 

Then. 

(19) 

For the case where n,  = i i?.  this can be solved directly for A', and the integration to 

determine NTU as a function of A can be evaluated analyticall): for the more general 

case, it will be necessary to do the evaluation numerically or graphically. The terms 

within the first { }  can be grouped together into a term. K': 
E;' = K[CjR,]'-"l " 2  , 

Note that K' depends upon the ratio of CJR, as \\ell as the ion exchange equilibrium 

constant. K or K,,. Since R, is a constant for an) particular resin, the equilibrium curve. 

or isotherm, depends upon the solution concentration. C,. as well as the ion exchange 

equilibrium constant, K. Since C, is usually considerabl>, sniallcr tlian R,. K '  usually 

increases with decreasing concentration \\.lien n ,  is greater than 11:. such as when a 

divalent ion is being exchanged for a monovalent ion. This is the widely recognized 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

c / c t  

FIGURE 4. Ion exchange equilibria for exchange of ions with equal charges 
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FIGURE 5 .  Ion exchange equilibria for exchange of a divalent ion for a monovalent 
ion. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
0
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1364 WATSON 

0 9  

0.8 

0.4 

0 2  

0.1 

0 0.1 0.2 0.3 0.4 0 .5  0.6 0.7 0.8 0.9 1.0 

c / c t  

FIGURE 6 Ion  exchange equilibria for exchange o f a  mono\alent ion for a divalent 
ion. 

affinitj of ion excliaiige resins for higher-balent ions from dilute solutions, and there 

is a converse louer aftinit? for the higher-\.alent ions from concentrated solutions 

Equilibrium relations for exchange of ions \\it11 equal \alences are illustrated 

iii Figure 4. Separate curies are presented for different \ d u e s  of K'. Note that the 
\ , a h  of the cxponent is zero: so K is the same as K'. The equilibrium curves are 
favorable as long as K (or K') is greater tliaii unit), Equilibriuni curves are shown in 
Figures 5 and 6 for cases \\here the exchanging ions have equal charges, when a 

nionovalent ion ( i n  the fluid) is being exchanged for a divalent ion ( in  the ion exchange 

resin). and \\hen a divaleiit ion is being exchanged for a monovalent ion. Separate 

curves are gi\en on each tigurc for different values of K'. tlie ion exchange equilibrium 
coiistaiit. Equilibrium curves  for other \.slues of K' can be cstiinated by interpolating 
bet\\eeii the curves presented. 

The breakthrough cunes calculated b\. the procedures just described are shown 

in Figures 7-9. In the cases sliomn, the resin \+as loaded \vith B and the feed solution 

contained only A. Thus, the operating line extends from tlie lower left corners in 
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SIMPLIFIED PREDICTIONS OF BREAKTHROUGH FRONTS 

1 .o 

0.9 

0.8 

0.7 

0.6 
4 s 0.5 

0.4 

0.3 

0.2 

0.1 

1365 

- 4 - 3 - 2 - 1 0  1 2  3 4 5 6 

NTU 

FIGURE 7. Normalized breakthrough fronts for exchange of ions with equal charge 
and tilass transfer resistance in the fluid phase. 
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FIGURE 8. Normalized breakthrough fronts for exchange of a divalent ion for a 
monovalent ion and mass transfer resistance in the fluid phase. 
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FIGURE 9. Normalized breakthrough fronts for exchange of a monovalent ion for 
a divalent ion and mass transfer resistance i n  the fluid phase. 

Figures 4-6 to the upper right corners. The integration to determine the breakthrough 

curves could be performed graphically. but the curves presented i n  Figures 7-9 were 

obtained using numerical integration since expressions for the equilibrium were 

available. (Analytical integration is possible for the case where the charges on the 

exchanging ions are equal.) The figure contains se\eral curves h i t  correspond to 

different calues of the equilibrium constant. K'. Different figures are presented for 

exchange of monovalent ions for divalent ions and for the exchange of divalent ions for 

monovalent ions. These cunes  collectivelq describe a wide range of ion exchange 

fronts. Approxiniate breakthrough fronts can be estimated for other values of the ion 

exchange equilibrium constant by interpolating between the curves presented. Similar 

dimensionless breakthrough fronts based upon resistance in the solid film are presented 

in Figures 10-13. 

These curves are expressed as a function of dimensionless distances, NTU. 

Thus, the width of the breakthrough curve is determined by the fluid film niass transfer 
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FIGURE 10. Normalized breakthrough fronts for exchange of ions with equal charges 
and mass transfer resistance in the solid phase. 
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FIGURE 11. Normalized breakthrough fronts for exchange of a divalent ion for a 
monovalent ioii and mass transfer resistance i n  the solid phase. 
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FIGURE 12. Normalized breakthrough fronts for exchange of a monovalent ion with 
a divalent ion and mass transfer resistance in the solid phase. 

coefficient and the fluid velocity (i.e., by the HTU) as \\ell as for the curvature in the 

isotherm (as expressed in K’). For a given HTU, the front is broader (less steep) with 
lower values of K’. Furthermore. the curves for lo\\er values of K‘ are more nearly like 
the symmetric curves produced by systems with linear isotherms. 

Irreversible Isotherms - The Suecial Case When K’ .buroaches Infinity 

As K’ increases, the curves become less symmetric; i n  the limit with large 
values of K’, the curves approach the solution for an irreversible isotherm. The 
irreversible isotherm is also shown in Figures 7-11. The irreversible isotherm as 

described by Cooper (10) is easily evaluated in the terms just described. In  that case, 

C* is always zero; thus, the NTU is easil! integrated. For an irreversible isotherm. 

NTU = - JdCiC = - In C + constant . 

If one specifies that the NTU will be zero \\lien C is 0.5 (the convention used in other 

examples in this paper), the constant becomes -ln(0.5), and the equation becomes 

NTU = - ln(2C) . 
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SIMPLIFIED PREDICTIONS OF BREAKTHROUGH FRONTS 1369 

Solving the expression for C gives 

C = O.Sexp(-NTU) . 

Note that this is not a symmetrical plot. The value of C declines exponentially with 

NTU (or position down the bed), but C would appear to be greater than unity for NTU 

less than -ln(2). This simply implies that the breakthrough front is very steep in this 

region, and for NTU less than -ln(2), C is unity. This breakthrough curve is also 

illustrated i n  Figures 7-9. Note that the breakthrough fronts approach close to the 

irreversible case, when K' becomes 16 or greater. 

Similarly, if the resistance is all in a solid "film," the NTU becomes 

NTU = - dQ/(Q'-Q) = - /dQ/(1 - Q) = In(1 - Q) + constant . J 
For the irreversible isotherm, Q' is 1 for all values of C. If the NTU is set equal to 

zero when Q is 0.5, the constant is -In(O.S) and the equation becomes 

NTU = ln[2(1 - Q)] . 

Expressed in terms of Q, this becomes 

Q = 1 - O.Sexp(NTU) . 

This is also a nonsymmetric front. However, in this case, the curve becomes steep and 

C appears to become negative at values of NTU greater than +ln(2). In rcality. C will 

be equal to zero for values of NTU greater than ln(2). This breakthrough front is 

shown in Figures 10-12. Note that the breakthrough curve approaches the irreversible 

case when K' becomes 16 or greater. 
I n  many cases, it is not possible to determine if the resistance to mass transfer 

is largely i n  the fluid film or in the solid phase from the shape of the breakthrough 

curve. In the case of the irreversible isotherm, this may be possible, but one should 

note that there are several reasons why this is usually very difficult. First, the view of 

the solid-phase resistance as a "film" is often greatly simplified. I n  many cases, such 

as where a significant fraction of the adsorbed solute is immobile, the Glueckauf 

approximation can become less accurate. Also, other "resistances" to mass transfer are 

usually present and contribute to spreading of the breakthrough front. Axial dispersion 

becomes important when both fluid- and solid-phase resistances are reduced sufficiently. 

Any or all of these effects can make it very difficult to determine the relative 

importance of the different resistances to mass transfer solely from the shape of 

breakthrough fronts, even for irreversible isotherms. 
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1370 WATSON 

Determination of Mass Transfer Coefficients from Breakthrough Data 

Although the discussion given above assumed that the objective was to evaluate 

the shape and width of a breakthrough front from knowledge of the adsorption or ion 

eschange isotherm and the appropriate mass transfer coefficient. the same analysis can 

be used to determine the mass transfer coefficient from experimental constant-pattern 

fronts. This may be desirable in quantitativel). evaluating different adsorbents or ion 

exchange resins. To determine the mass transfer coefficient. it is necessarq. to know the 

adsorptionhon exchange isotherm. The operating line is constructed from the specified 

initial condition of the bed and the final composition of the solution and the 

adsorbenuresin loading, as illustrated i n  Figure I .  The dimensionless breakthrough 

curve is then constructed, as illustrated in Figure 3. Note that the dimensionless 

breakthrough curve depends upon the isotherm and the operating line; it is dependent 

of the mass transfer resistance in the system only in the sense that one needs to know 

whether the NTU should be evaluated in terms of resistance in the fluid phase or in the 

solid phase. For many ion eschange processes, integration may not be necessary 

because the dimensionless fronts can be estimated b) interpolating between the curves 

for different values of K' presented in Figures 4-12. 
To evaluate the mass transfer coefficient. one only needs to compare the data 

with the normalized breakthrough curve. For instance, the normalized breakthrough 

curve can be used to determine the NTU required for the concentration i n  the front to 

change from 0.2 times the inlet concentration to 0.8 times the inlet concentration. Then 

the time or distance for the same concentration change can be taken from the 

experimental curve. The ratio of these values \ b i l l  be the HTU: 

HTU = Z,lZ,, 

where Z, is the measured distance. and Z, is the dimensionless distance. Then the mass 

transfer coefficient is obtained by dividing the superficial fluid velocity by the HTU. 

Once the change in NTU for a given change i n  concentration is determined, it 

can be used for determining the mass transfer coefficient at any number of fluid 

velocities, or flow rates. That is, the distance or time required for the change in 

concentration can be determined for each velocity used; these values can be used to 

determine the HTU for each velocity, and then the mass transfer coefficients can be 

determined. Similarly. a single normalized breakthrough curve could be used for a 
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SIMPLIFIED PREDICTIONS OF BREAKTHROUGH FRONTS 1371 

variety of particle diameters, as long as all of the particle material is the same and has 

the same isotherm. 

CONCLUSIONS 

Because they are unsteady state operations, fixed-bed adsorption and ion 

exchange are often evaluated superficially or incompletely. There are only a few exact 

solutions for common cases. Although many real systems can be approximated by one 

of the available solutions, even these are numerically difficult to evaluate and thus are 

often not used when they are needed. The graphical/numerical method suggested in this 

paper can be used for any constant-pattern adsorption of ion exchange systems. It is 

an extension of steady state analysis and design methods commonly used for 

absorption/stripping operations. The approach can be used either to predict the shape 

and width of adsorption or ion exchange fronts once mass transfer coefficients are 

known or to evaluate mass transfer coefficients from experimental measurements of 

breakthrough fronts. Normalized ion exchange equilibrium curves and breakthrough 

curves are presented which should be useful for approximating breakthrough fronts for 

a large number of binary ion exchange processes. 
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